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Abstract

This paper proposes an approach to automate chemistry experiments using robots by translating
natural language instructions into robot-executable plans, using large language models together with
task and motion planning. While recent advances have utilized large language models to generate task
plans, the issue of executability with embodied agents remains unresolved. To enable autonomous
chemistry experiments and alleviate the workload of chemists, robots must interpret natural language
commands, perceive the workspace, autonomously plan multi-step actions and motions, consider safety
precautions, and interact with various laboratory equipment. Our approach, CLAIRify, combines
automatic iterative prompting with program verification to ensure syntactically valid programs in a
data-scarce domain-specific language that incorporates environmental constraints. The generated plan
is executed through solving a constrained task and motion planning (TAMP) problem using PDDL-
Stream solvers to prevent spillages of liquids as well as collisions in chemistry labs. We demonstrate
the effectiveness of our approach in planning chemistry experiments, with plans successfully executed
on a real robot using a repertoire of robot skills and lab tools. Specifically, we showcase the utility of
our framework in pouring skills for various materials and two fundamental chemical experiments for
materials synthesis: solubility and recrystallization. Further details about CLAIRify can be found at
https://ac-rad.github.io/clairify/.

Keywords: Large language models, Constrained task and motion planning, Plan generation verification,
Self-driving labs, Chemistry lab automation

1 Introduction

The execution of chemistry experiments, which
represents a crucial stage in the process of material

discovery, typically relies on human experts. How-
ever, manual experimentation poses a number of
significant challenges, such as difficulties in repro-
ducibility, high resource requirements, and limited

1

https://ac-rad.github.io/clairify/


scalability. To address these obstacles, the concept
of self-driving labs (SDLs) has emerged (Seifrid
et al., 2022). In order to facilitate access to SDLs
by chemists worldwide, it is necessary to enable
general-purpose robots to perform a wide range
of chemistry tasks and experiments safely and
flexibly.

One of the principal obstacles in effectively
employing robots in chemistry labs is to ensure
that they are natural and intuitive for chemists
to operate. An approach to achieving a natu-
ral and intuitive interface between chemists and
robots is through the use of natural language as
a communication medium. This approach enables
users to instruct robots in an efficient and effective
manner.

This work aims to facilitate autonomous
and safe execution of chemistry experiments
using general-purpose robot manipulators. This is
accomplished through the utilization of natural
language instructions to generate plans. Several
challenges must be addressed at both the natural
language processing (NLP) and robotic planning
levels for this purpose. At the NLP level, the robot
must be capable of converting natural language
instructions into executable robot instructions.
At the robotic planning level, the robotic sys-
tem should be capable of planning robot tasks
and motions while taking safety considerations
into account, using intermediate goals identified
by NLP and perceptual information of the robot
workspace.

Natural language has been used in the litera-
ture to can overcome the communication barrier
between humans and robots, for example in nav-
igation tasks (Tellex et al., 2011). More recently,
numerous studies have demonstrated that large
language models (LLMs) can assist robots to rea-
son with common sense (Brown et al., 2020; Singh
et al., 2022). LLMs have been used to generate
structured outputs (Devlin et al., 2019; Brown
et al., 2020; Chowdhery et al., 2022), includ-
ing code generation (Chen et al., 2021; Wang
et al., 2021; Li et al., 2022) and robot program-
ming (Liang et al., 2022). Nevertheless, the appli-
cation of LLMs to task-plan generation for chem-
istry robots presents two key challenges. First,
generated plans must adhere to strict machine-
executable syntax rules and be capable of being

<XDL>
<Hardware>

<Vessel id="beaker">
</Hardware>
...
<Procedure>

...
<Repeat steps="2">

<Add vessel="beaker1"
reagent="acetic acid"
amount="15 g"/>

<Stir vessel="beaker1"
time="20 s"/>

</Repeat>
</Procedure>
</XDL>

Error: Hardware
can only contain
Component tags

Error: Steps attri-
bute not defined

Error: "beaker1"
not defined in
Hardware

Structured language generation
without iterative prompting

<XDL>
<Hardware>

<Component id="beaker">
</Hardware>
...
<Procedure>

...
<Repeat repeats="2">

<Add vessel="beaker"
reagent="acetic acid"
amount="15 g"/>

<Stir vessel="beaker"
time="20 s"/>

</Repeat>
</Procedure>
</XDL>

Structured language generation
by CLAIRify

TAMP
Not executable

Chemistry experiment

Repeat this 2 times:
Add 15 g acetic acid to beaker.

Stir for 20 seconds.

Heterogeneous lab
devices & robots

Fig. 1: Task plans generated by LLMs may
contain syntactical errors in domain-specific lan-
guages. By using verifier-assited iterative prompt-
ing, CLAIRify can generate a valid program.
Once the program has been verified, it is passed
on to a task and motion planner (TAMP) for exe-
cution by a robot.

executed by the robot, requiring task-plan veri-
fication (Garrett et al., 2020; Ahn et al., 2022).
Second, LLMs may perform poorly in generating
task plans in a zero-shot manner for data-scarce
domain-specific languages, such as chemistry (Gu
et al., 2021; Liu et al., 2022). Several approaches
have been proposed in the literature to address
these issues. One promising technique is iterative
prompting, which has an advantage over fine-
tuning LLMs, as the latter requires large train-
ing datasets to learn domain-specific languages
reasonably well and incurs high computational
costs (Mishra et al., 2021; Wang et al., 2021;
Wu et al., 2022). Iterative prompting enables the
LLM to verify candidate plans while providing
the rules of structured language as input, thereby
leveraging the in-context ability of LLMs.

The planning level of the robotic system
takes as input perception, vision-based outcome
evaluation of experiments and natural language
instructions, and solves robot constrained task
and motion planning (TAMP) problem. To do
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so, robots must possess both general and chem-
istry domain-specific perception and manipula-
tion skills, including recognizing transparent and
opaque objects (Xu et al., 2021; Wang et al.,
2023), estimating object poses, and monitoring
the state of materials synthesis, for example,
detection of a solution when fully dissolved (Shiri
et al., 2021). Dexterous manipulation and han-
dling is also necessary, such as constrained motion
for picking and transporting objects without
spilling their contents, pouring skills, and manip-
ulation of tools and objects. Additionally, high
precision and repeatability are crucial for repro-
ducible and reliable results in robot-executed
chemistry experiments.

Ensuring safety during experiments and inter-
actions is another challenge (Ménard and Trant,
2020). Multi-layered safety requirements are nec-
essary, including high-level constraints on material
synthesis order in experiment description and task
planning, and low-level manipulation and percep-
tion skills to prevent spilling during transportation
of chemistry vials and beakers.

Contributions- We introduce an autonomous
robotic system for chemistry lab automation, an
end-to-end closed-loop robotic framework that
translates natural language into structured long-
horizon task plans and then executes them by a
constrained task and motion planning solver, inte-
grated with perception and manipulation skills,
and vision-based evaluation of experiment out-
comes (Figure 1). Our approach consists of two
modules. The first is CLAIRify, which translates
a natural language input into a structured plan.
The second is the translation of the plan to low-
level robot actions. To evaluate the framework,
we use a domain-specific language called Chemical
Description Language (XDL) (Mehr et al., 2020).
XDL is an XML-based DSL used to describe
action plans for chemistry experiments in a struc-
tured format, and is suitable for commanding
robots in self-driving laboratories (Seifrid et al.,
2022). Our method includes (I) a rule-based iter-
ative verifier to check for syntax correctness and
environment constraints, which improves zero-
shot task plan generation in a data-scarce domain.
(II) At the TAMP level, constrained task and
motion planning are incorporated using a PDDL-
Stream (Garrett et al., 2020) solver to avoid
spillage when transporting liquids and powders.
To improve the success rate of planning, we

demonstrate that an 8-DoF robot has 97% success
rate compared to 84% of a 7-DoF robot. Moreover,
we present accurate and efficient pouring skills
inspired by human motions with an average rela-
tive error of 8.1% and 8.8% for pouring water and
salt, respectively, compared to a baseline method
with 81.4% and 24.1% errors. These results are
comparable with recent results (Kennedy et al.,
2019; Huang et al., 2021), while our method is
simpler, and requires fewer and simpler sensors.

Our evaluation results demonstrate that
CLAIRify outperforms the current state-of-the-
art model for XDL generation presented in (Mehr
et al., 2020). Additionally, CLAIR represents
a significant advancement from the approach in
(Fakhruldeen et al., 2022), which utilized a finite
state machine with fixed objects in a static
workspace. As a proof of concept for chemistry lab
automation, we achieved results that are compa-
rable to the literature ground truth for a solubility
experiment, with a 7.2% error rate for the sol-
ubility of salt, and successful recrystallization of
alum.

The paper is organized as follows: Section 2
reviews the state of the art. Section 3 defines
the problem and presents the proposed end-to-end
approach, covering natural language and percep-
tual inputs to robot task and motion planning and
skill execution. Experiments and results are pre-
sented in Section 4. Discussion of the results is
provided in Section 5, and conclusions are drawn
in Section 6.

2 Related Work

This section describes recent advancements in
lab automation, specifically focusing on robotics
and the methods through which large language
models (LLMs) can be incorporated into these
systems. Furthermore, the section highlights the
challenges associated with generating verifiable
task plans from LLMs, which is necessary to gen-
erate robot tasks and motion plans. Lastly, the
section outlines recent efforts that focus on identi-
fying the essential robot skills required to execute
lab automation tasks effectively.
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2.1 Lab Automation

Lab automation aims to introduce automated
hardware in a laboratory to improve the effi-
ciency of scientific discovery. An example of lab
automation is the usage of mobile robots for
improving photocatalysts for hydrogen produc-
tion from water (Burger et al., 2020). Recently,
an automated workflow that translates organic
chemistry literature into a structured language
called XDL was proposed (Mehr et al., 2020).
ARChemist (Fakhruldeen et al., 2022), a lab
automation system, was developed to con-
duct experiments including solubility screening
and crystallization without human intervention.
Although these major steps towards chemistry
lab automation have been made, their dependence
on predefined tasks and on motion plans without
constraint satisfaction guarantees limits their flex-
ibility in new and dynamic workspaces. In those
works, pick & place was the primary task that the
manipulators were carrying out. Those works were
tested in hand-tuned and static environments to
avoid occurrences of unsatisfied task constraints
and the associated problems, such as chemical
spills during transfer of vessels filled with liquid.
Our framework resolves these gaps through using
large language models to generate long horizon
machine-readable instructions and passing it to a
constraint satisfaction and scene-aware planning
system with a variety of skills.

2.2 Large Language Models for
Chemistry

Several language models specialized for the chem-
istry or science domain have been proposed, such
as MolT5 (Edwards et al., 2022), Chemformer
(Irwin et al., 2022), and Galactica (Taylor et al.,
2022). After the release of GPT-3, chemistry appli-
cations were attempted without further train-
ing (Jablonka et al., 2023). The abilities to do
Bayesian optimization (Ramos et al., 2023), to
use external chemistry tools (Bran et al., 2023),
and to synthesize molecules by reading documen-
tation (Boiko et al., 2023) were explored. Our
work focuses on increasing the reliability of the
output of LLMs without further training by intro-
ducing iterative prompting and low-level planning
through a task and motion planning framework.

2.3 Leveraging Language Models
with External Knowledge

A challenge with LLMs generating code is that
the correctness of the code is not assured. There
have been many interesting works on combining
language models with external tools to improve
the reliability of the output. Mind’s Eye (Liu
et al., 2022) attempts to ground large language
model’s reasoning with physical simulation. They
trained LLM with pairs of language and codes and
used the simulation results to prompt an LLM to
answer general reasoning questions.

Toolformer (Schick et al., 2023) incorporates
API calls into the language model to improve
a downstream task, such as question answer-
ing, by fine-tuning the model to learn how to
call the API. LEVER (Ni et al., 2023) improves
LLM prompting for SQL generation by using a
model-based verifier trained to verify the gener-
ated programs. As SQL is a common language,
the language model is expected to understand its
grammar. However, for DSLs, it is difficult to
acquire training datasets and expensive to exe-
cute the plans to verify their correctness. Our
method does not require fine-tuning any models
or prior knowledge on the target language within
the language model. Our idea is perhaps closest
to LLM-Augmenter (Peng et al., 2023), which
improves LLM outputs by giving it access to exter-
nal knowledge and automatically revising prompts
in natural language question-answering tasks. Our
method similarly encodes external knowledge in
the structure of the verifier and prompts, but for a
structured and formally verifiable domain-specific
language. A review on augmenting LLMs with
external tools is found in (Mialon et al., 2023).

2.4 Task Planning with Large
Language Models

High-level task plans are often generated from
a limited set of actions (Garrett et al., 2020),
because task planning becomes intractable as the
number of actions and time horizon grows (Kael-
bling and Lozano-Pérez, 2011). One approach
to do task planning is using rule-based meth-
ods (Mehr et al., 2020; Baier et al., 2009). More
recently, it has been shown that models can learn
task plans from input task specifications (Sharma
et al., 2021; Mirchandani et al., 2021; Shah et al.,
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2021), for example using hierarchical learning
(Xu et al., 2018; Huang et al., 2019), regression
based planning (Xu et al., 2019), or reinforce-
ment learning (Eysenbach et al., 2019). However,
to effectively plan tasks using learning-based tech-
niques, large datasets are required that are hard
to collect in many real-world domains.

Recently, many works have used LLMs to
translate natural language prompts to robot task
plans (Ahn et al., 2022; Huang et al., 2022; Liang
et al., 2022; Singh et al., 2022). For example, Inner
Monologue (Huang et al., 2022) uses LLMs in con-
junction with environment feedback from various
perception models and state monitoring. However,
because the system has no constraints, it can pro-
pose plans that are nonsensical. SayCan (Ahn
et al., 2022), on the other hand, grounds task plans
generated by LLMs in the real world by providing
a set of low-level skills the robot can choose from.
A natural way of generating task plans is using
code-writing LLMs because they are not open-
ended (i.e., they have to generate code in a specific
manner in order for it to be executable) and are
able to generate policy logic. Several LLMs trained
on public code are available, such as Codex (Chen
et al., 2021), CodeT5 (Wang et al., 2021), Alpha-
Code (Li et al., 2022) and CodeRL (Le et al.,
2022). LLMs can be prompted in a zero-shot
way to generate task plans. For example, Huang
et al. (2022) analyzed the planning ability of LLM
in virtual environment, Code as Policies (Liang
et al., 2022) repurposes code-writing LLMs to
write robot policy code, and ProgPrompt (Singh
et al., 2022) generates plans that take into account
the robot’s current state and the task objectives.
Text2Motion (Lin et al., 2023) combines LLM
with skill feasibility heuristics to guide task plan-
ning. Inagaki et al. (2023) generated Python code
for an automated liquid-handling robot from natu-
ral language instructions. However, these methods
generate Pythonic code, which is abundant on
the Internet. For domain-specific languages, naive
zero-shot prompting is not enough; the prompt
has to incorporate information about the target
language so that the LLM can produce outputs
according to its rules.

Our approach, on the other hand, generates
a task plan directly from an LLM in a zero-
shot way on a constrained set of tasks which are
directly translatable to robot actions. We ensure

that the plan is syntactically valid and meets envi-
ronment constraints using iterative error checking.
However, while the generated plan is verified for
syntax and constraint satisfaction, it does not con-
sider the robot embodiment and workspace scene,
making its execution on a robot uncertified. To
address this issue, we integrate the generated task
plans as intermediate goals into a certifiable task
and motion planner framework, which produces
executable trajectories for the robot.

2.5 Task and Motion Planning with
Constraints

Task and motion planning (TAMP) simulta-
neously determines the sequence of high-level
symbolic actions, such as picking and placing,
and low-level motions for the action, such as
trajectory generation. Another TAMP solver,
PDDLStream (Garrett et al., 2020), extends
PDDL (Aeronautiques et al., 1998), a common
language to describe a planning problem mainly
targeting discrete actions and states, by intro-
ducing streams, a declarative procedure via sam-
pling procedures. PDDLStream reduces a con-
tinuous problem to a finite PDDL problem and
invokes a classical PDDL solver as a subrou-
tine. Since PDDLStream verifies the feasibility
of action execution during planning time, it can
inherently enhance safety by avoiding unfeasible
plans or plans that may lead to unsafe situ-
ations. Nonetheless, PDDLStream does not yet
account for constraints in the planning process, for
example to avoid material spillage from beakers
during transportation, which impedes its deploy-
ment in real-world lab environments. For this pur-
pose, sampling-based motion constraint adherence
(Berenson et al., 2011) or model-based motion
planning (Muchacho et al., 2022) are possible
stream choices. To overcome this shortcoming,
our work extends PDDLStream with a projection-
based sampling technique (Kingston et al., 2019)
to provide constraint satisfaction, completeness,
and global optimality. The proposed PDDLStream
takes intermediate goals generated by LLMs in a
structured language as its input.
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2.6 Skills and Integration of
Chemistry Lab Tools

In the process of lab automation, robots inter-
act with tools and objects within the workspace
and require a repertoire of many laboratory skills.
Some skills can be completed with existing het-
erogeneous instruments and sensors in chemistry
labs, such as scales, stir plates, pH sensors, and
heating instruments. Other skills are currently
done either manually by humans in the lab or with
expensive special instruments. In a self-driving
lab, robots should acquire those skills by effec-
tively using different sensory inputs to compute
appropriate robot commands. Pouring is a com-
mon skill in chemistry labs. Recent work (Kennedy
et al., 2019; Huang et al., 2021) used vision
and weight feedback to pour liquid with manip-
ulators. (Kennedy et al., 2019) proposed using
optimal trajectory generation combined with sys-
tem identification and model priors. To achieve
milliliter accuracy in water pouring tasks with a
variety of vessels at human-like speeds, (Huang
et al., 2021) used self-supervised learning from
human demonstrations. In this work, we have
reached similar results for pouring, using com-
mercial scales that have delayed feedback. Our
approach is model-free, and it can pour granu-
lar solids as well. Granular solids have different
dynamics from liquids, similar to the avalanche
phenomenon. Lastly, while executing a chemistry
experiment, the robot should possess perception
skills to measure progress toward completing the
task. For example, in solubility experiments, the
robot should perceive when the solution is fully
dissolved, and therefore stop pouring the solvent
into the solution. There are different ways to mea-
sure solubility. In our work, we use the turbidity
measure (Shiri et al., 2021), which is based on opti-
cal properties of light scattering and absorption
by suspended sediment (Kitchener et al., 2017).

3 Methods

We propose an automated robotic experiment
platform that takes instructions from a human in
natural language and executes the corresponding
experiment. The natural language input is con-
verted into a sequence of robot plans written in
a structured language by an LLM-based system,
CLAIRify. XDL (Steiner et al., 2019) was used

as the robot programming language. The task
and motion planning module generates the robot
motion from the generated XDL. The overview of
the proposed method is shown in Figure 2.

3.1 CLAIRify: Natural language to
structured programs

CLAIRify takes a chemistry experiment descrip-
tion in natural language and generates a struc-
tured experiment plan in XDL format, which
will be fed into the subsequent module to gen-
erate robot motions. A general overview of the
CLAIRify pipeline is given in Figure 2(a).

CLAIRify generates XDL with an automated
iterative prompting between a generator and
a verifier. The generator outputs XDL from a
prompt that combines the experiment descrip-
tion and the target language format description.
However, we cannot guarantee the output from
the generator is syntactically valid, meaning that
it would definitely fail to compile into lower-
level robot actions. To generate syntactically valid
programs, we pass the output of the generator
through a verifier. The verifier determines whether
the generator output follows all the rules and
specifications of the target structured language
and can be compiled without errors. If it can-
not, the verifier returns error messages stating
where the errors were found and what they were.
These are then appended to the generator output
and added to the prompt for the next iteration.
This process is repeated until a valid program is
obtained, or until the timeout condition is reached.
Algorithm 1 describes our proposed method.

Once the generator output passes through the
verifier with no errors, we are guaranteed that
it is syntactically valid structured language. This
output will then be translated into lower-level
robot actions by passing it through TAMP for
robot execution. Each component of the pipeline
is described in more detail below.

3.1.1 Generator

The generator takes a user’s instruction and gen-
erates unverified structured language using an
LLM. The input prompt to the LLM is composed
of a description of the target language, a sen-
tence specifying what the LLM should do (i.e.
“Convert to XDL”), the command to the LLM,
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7

<Add vessel="V1" reagent="acetic
acid" quantity="40 g"/>Wrong output

2

<Add vessel="V1" reagent="acetic
acid" amount="40 g"/>Correct output

4
OR

Natural
language
input

Add 40 g acetic
acid to beaker

Pass
<Add vessel="V1" reagent="acetic

acid" amount="40 g"/>

5Available hardware: beaker V1
Available reagents: acetic acid

Quantity is not a permissible
attribute for the Add tag.

Feedback
3

Structured
language

Unverified
structured
language

Environment
constraints

Structured
language verifierLLM

Structured
language
definition

Robot
planning

Robot planning

Robot
execution

1

6

5

7

CLAIRify(a)

(b)

Fig. 2: Our framework (a) CLAIRify: LLM-based natural language processing module. The LLM
takes the input (1), structured language definition, and (optionally) resource constraints and generates
unverified structured language (2). The output is examined by the verifier, and is passed to LLM with
feedback (3). The LLM-generated outputs passes through the verifier (4). The correct output (5) is
passed to the task and motion planning module (6) to generate robot trajectories. (b) Robot planning
module, which is composed of Perception, Task & Motion Planning, and Skills blocks. Our framework
enables the robot to leverage available chemistry lab devices (including sensors and actuators) by adding
them to the robot network through ROS. The robot is equipped with an additional DoF at the end-
effector, allowing it to perform constrained motions. Our framework receives the chemical synthesis goal
in XDL format. The procedure component is converted into corresponding PDDL goals, and hardware
and reagents components identify the required initial condition for synthesis. Perception detects objects
and estimates their positions, contents in the workspace, and task progress. PDDLStream generates a
sequence of actions for the robot execution (7).

and the natural language instruction for which
the task plan should be created. The description
of the XDL language includes its file structure
and lists of the available actions (can be thought

of as functions), their allowed parameters and
their documentation. The input prompt skeleton
is shown in Snippet 1, Figure 3.
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Algorithm 1 CLAIRify: Verifier-Assisted Iter-
ative Prompts

Input: Structured language description L, instruction x
Output: Structured language task plan, ySL

procedure IterativePrompting(L, x)
ySL′ = Generator(L, x)
errors = Verifier(ySL′ )
while len(errors) > 0 and timeout condition != True do

ySL′ = Generator(L, x, ySL′ , errors)
errors = Verifier(ySL′ )

end while
ySL = ySL′

end procedure

Although the description of the target struc-
tured language is provided, the output may con-
tain syntactic errors. To ensure syntactical cor-
rectness, the generator is iteratively prompted
by the automated interaction with the verifier.
The generated code is passed through the verifier,
and if no errors are generated, then the code is
syntactically correct. If errors are generated, we
re-prompt the LLM with the incorrect task plan
from the previous iteration along with the list of
errors indicating why the generated steps were
incorrect. The skeleton of the iterative prompt is
shown in Snippet 2, Figure 3. The feedback from
the verifier is used by the LLM to correct the
errors from the previous iteration. This process is
continued until the generated code is error-free or
a timeout condition is reached, in which case the
system reports not being able to generate a task
plan.

3.1.2 Verifier

The verifier works as a syntax checker and static
analyzer to check the output of the generator and
send feedback to the generator. It first checks
whether the input can be parsed as correct XML
and then checks the allowance of action tags, the
existence of mandatory properties, and the cor-
rectness of optional properties. This evaluates if
the input is syntactically correct XDL. The ver-
ifier also checks the existence of definitions of
hardware and reagents used in the procedure or
provided as environment constraints, which works
as a simple static analysis of necessary conditions
for executability. If the verifier catches any errors,
the candidate task plan is considered to be invalid.
In this case, the verifier returns a list of errors it
found, which is then fed back to the generator.

initial_prompt = """
# <Description of XDL >

# <Hardware constraints(optional)>
# <Reagent constraints (optional)>

Convert to XDL:
# <Natural language instruction >
"""

Snippet 1: Initial prompt

iterative_prompt = """
# <Description of XDL >

# <Hardware constraints(optional)>
# <Reagent constraints (optional)>

Convert to XDL:
# <Natural language instruction >
# <XDL from previous iteration >
This XDL was not correct.
There were the errors
# <List of errors , one per line >
Please fix the errors
"""

Snippet 2: Iterative prompt

Fig. 3: Prompt skeleton: (1) At the initial gen-
eration, we prompt the LLM with a description
of XDL and the natural language instruction. (2)
After the LLM generates structured-language-like
output, we pass it through our verifier. If there are
errors in the generated program, we concatenate
the initial prompt with the XDL from the previous
iteration and a list of the errors.

3.1.3 Incorporating Environment
Constraints

Because resources in a robot workspace are lim-
ited, we need to consider those constraints when
generating task plans. If specified, we include the
available resources into the generator prompt. The
verifier also catches if the candidate plan uses
any resources aside from those mentioned among
the available robot resources. Those errors are
included in the generator prompt for the next
iteration. If a constraint list is not provided, we
assume the robot has access to all resources. In the
case of chemistry lab automation, those resources
include experiment hardware and reagents.

3.1.4 User Interface

We provide a graphical user interface for CLAIR-
ify to increase accessibility. Users can access it
via a web browser (Figure 4) and CLAIRify
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Fig. 4: Web interface for CLAIRify. Users
input natural language descriptions of the experi-
ment in the left column. XDL is generated in the
right column when the user pushes the translate
button.

is called by the Python backend implemented in
Flask (Grinberg, 2018).

3.2 Task and Motion Planning for
Chemistry Experiments

Our task plan execution framework consists of
three components: perception, task and motion
planning (TAMP), and a set of manipulation
skills, as shown in Fig. 2 (b). XDL input coming
from CLAIRify provides a high-level description
of experiment instructions to the TAMP module.
The perception module updates the scene descrip-
tion by detecting the objects and estimating their
positions using fiducial markers. We used AprilTag
(Olson, 2011). Currently, we assume prior knowl-
edge of vessel contents and sizes, and each vessel is
mapped to a unique marker ID. Given the instruc-
tions from XDL and the instantiated workspace
state information from perception, a sequence of
high-level actions and robot trajectories are simul-
taneously generated by the PDDLStream TAMP
solver. The resulting plan is then realized by the
manipulation module and robot controller, while
closing the loop with perception feedback, such
as updated object positions and status of the
solution.

The TAMP module converts experiment
instructions given by XDL into PDDLStream

Algorithm 2 TampForLabAutomation()

Input: A XDL recipe χ, sensory input H, PDDL-
Stream domain D

Output: Reference plan to execute
1: Goals,O ←xdlParser(χ) ▷ Objects
2: I ← perception(H,O) ▷ Initial conditions
3: if not passConditions(I, O) then return
4: plan = ∅, P = ∅
5: for all G ∈ Goals do
6: while time() ≤ tmax do
7: P = optimisticPddlStreamPlan(I, G,
D)

8: if P ̸= ∅ and isStreamFeasible(P) then
break

9: end while
10: if P = ∅ then return
11: plan← plan ∪ P
12: I = updateSceneRepresentation(I,P)
13: end for
14: return plan

goals and generates a motion plan. The TAMP
algorithm is shown in Alg. 2.

3.2.1 PDDLStream

A PDDLStream problem described by a tuple
(P,A,S,O, I,G) is defined by a set of predi-
cates P, actions A, streams S, initial objects O,
an initial state I, and a goal state G. A pred-
icate is a boolean function that describes the
logical relationship of objects. A logical action
a ∈ A has a set of preconditions and effects. The
action a can be executed when all the precon-
ditions are satisfied. After execution, the current
state changes according to the effects. The set of
streams, S, distinguishes a PDDLStream problem
from traditional PDDL. Streams are conditional
samplers that yield objects that satisfy specific
constraints. The goal of PDDLStream planning is
to find a sequence of logical actions and a con-
tinuous motion trajectory starting from the initial
state until all goals are satisfied, ensuring that the
returned plan is valid and executable by the robot.
We define four types of actions in our PDDL-
Stream domain: pick, move, place, and pour. For
example, the move action translates the robot
end-effector from a grasping pose to a placing or
pouring pose using constrained motion planning.
PDDLStream handles continuous motion using
streams. Streams generate objects from contin-
uous variables that satisfy specified conditions,
such as feasible grasping pose and collision-free
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motion. An instance of a stream has a set of cer-
tified predicates that expands I and functions as
preconditions for other actions.

A PDDLStream problem is solved by invoking
a classical PDDL planner, such as Fast Downward
(Helmert, 2006), with optimistic instantiation of
streams (line 7, Alg. 2). If a plan for the PDDL
problem is found, the optimistic stream instances
s ∈ S in the plan are evaluated to determine the
actual feasibility (line 8). If no plan was found
or the streams are not feasible, other plans are
explored with a larger set of optimistic stream
instances.

Chemical Description Language (XDL)

XDL is based on XML syntax and is mainly
composed of three mandatory sections: Hardware,
Reagents, and Procedure. We parse XDL instruc-
tions and pass them to the TAMP module. The
Hardware and Reagents sections are parsed as ini-
tial objects O. Procedure is translated into a set
of goals Goals (line 1, Alg. 2). I is generated from
O and sensory inputs (line 2). Each intermedi-
ate goal G ∈ Goals is processed by PDDLStream
(line 5). If a plan to attain G is found, it is stored
(line 10) and I is updated according to the plan
(line 11). After a set of plans to attain all goals is
found, we obtain a complete motion plan (line 12).

Plan Refinement at Execution Time

We adopt two considerations for the dynamic
nature of chemistry experiments: motion plan
refinement and task plan refinement.

The generated motion plan is refined to reflect
the updated status of the scene and to over-
come the perception errors. The initial object pose
detection may contain errors, therefore, the object
may not be present in the expected position dur-
ing execution. This error arises for two reasons.
First, when the robot interacts with the objects in
the workspace, their position changes, for exam-
ple when regrasping an object after placing it in
the workspace. This change is not always fore-
seeable by the planner ahead of time. Second,
the perception error is lower when the grasping
pose is estimated when the robot in-hand cam-
era is closer to the target object, considering the
hand-eye calibration error. Lowering the percep-
tion error makes the execution more robust to

grasping failures. Therefore, to improve the suc-
cess rate, the object pose is estimated just before
grasping, and the trajectory is refined. We assume
that the perturbation of the perceived state of the
objects is bounded so that it does not cause a
change in the logical state of the system, which
would necessitate task-level replanning.

In addition to motion refinement, we con-
sider task plan refinement. Task execution can be
repeated using the feedback from perception mod-
ules at execution time to support conditional oper-
ations in chemistry experiments, such as adding
acid until pH reaches 7. The number of repetitions
required to satisfy conditions is unknown at plan-
ning time, so the task plan is refined at execution
time.

3.2.2 Motion Constraints for Spillage
Prevention

Unlike pick-and-place of solid objects, robots in
a chemistry lab need to carry beakers that con-
tain liquids, powders, or granular materials. These
chemicals are sometimes harmful, so the robot
motion planner should incorporate constraints
to prevent spillage. To this end, an important
requirement for robot motion is the orientation
constraints of the end-effector. To avoid spillage,
the end-effector orientation should be kept in a
limited range while beakers are grasped. We incor-
porated constrained motion planning in the frame-
work to meet these safety requirements, under
the assumption of velocity and acceleration upper
bounds. Moreover, we introduced an additional
(8th) degree of freedom to the robot arm, in order
to increase the success rate of constrained motion
planning. We empirically observed no spillage as
long as orientation constraints are satisfied in the
regular acceleration and velocity of the robot end-
effector, particularly since beakers are typically
not filled to their full capacity in a chemistry lab.
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Algorithm 3 ConstrainedMotionPlan-
ning()

1: for all i ∈ trials do
2: qg ← solveIK((IpB,

I RB))
3: pathPlanner← init(q0, qg)
4: while path is ∅ do
5: q ← sample()
6: while ∥F(q)∥ > ϵ do

7: δq ← J †(q)F(q)
8: q ← q − δq
9: end while

10: path← pathPlanner(q)
11: end while
12: if path ̸= ∅ then return path
13: end for
14: return path

Constrained Motion Planning

Given a robot with n degrees of freedom in
the workspace Q ∈ Rn with obstacle regions
Qobs ∈ Rn, the constrained planning problem can
be described as finding a path in the manipula-
tor’s free configuration space Qfree = Q − Qobs

that satisfies initial configuration q0 ∈ Rn, end-
effector goal pose (IpB ∈ R3,I RB ∈ SO(3)),
and equality path constraints F(q) : Q → Rk.
The constrained configuration space can be rep-
resented by the implicit manifold M = {q ∈
Q | F(q) = 0}. The implicit nature of the man-
ifold prevents planners from directly sampling,
since the distribution of valid states is unknown.
Further, since the constraint manifold resides in
a lower dimension than the configuration space,
sampling valid states in the configuration space is
highly improbable and thus impractical. Following
the constrained motion planning framework devel-
oped in (Kingston et al., 2019, 2018), our frame-
work integrates the projection-based method for
finding constraint-satisfying configurations during
sampling as described in Alg. 3. In this work, the
constraints are set to the robot end-effector, hence
they can be described with geometric forward
kinematics, with its Jacobian defined as J (q) =
δF
δq . After sampling from Qfree in line 5, projected

configurations q are found by minimizing F(q)
iteratively using Newton’s method (highlighted
in grey). We use probabilistic roadmap methods
(PRM⋆) to plan efficiently in the 8-DoF config-
uration space found in our chemistry laboratory
domain (Karaman and Frazzoli, 2011; Kavraki
et al., 1996).

The constrained path planning problem is sen-
sitive to the start and end states of the requested
path, since paths between joint states may not
be possible under strict or multiple constraints. If
constrained planning is executed with any arbi-
trary valid solution from the IK solver, the planner
typically fails. To address this shortcoming, three
considerations are made. First, a multi-threaded
IK solver with both iterative and random-based
techniques is executed, and the solution that
minimizes an objective function ϕ is returned
with TRAC-IK, proposed in (Beeson and Ames,
2015). During grasping and placing, precision is
paramount, and we only seek to minimize the
sum-of-squares error between the start and goal
Cartesian poses. Second, depending on the robot
task, the objective function is extended to maxi-
mize the manipulability ellipsoid as described in
(Yoshikawa, 1985), which is applied for more com-
plicated maneuvers, such as transferring liquids
across the workspace. Finally, note that config-
uration sampling must account for the fact that
multiple goal configurations are possible. For this
purpose, Alg. 3 can iterate several times to find
various goal configurations in line 2.

8-DoF Robot Arm

To increase the success rate of planning and grasp-
ing under non-spillage constraints, we introduced
an additional degree of freedom to the 7 DoF
Franka robot. The aim of the addition is twofold.
First, the 8-DoF robot has a higher empirical suc-
cess rate in constrained motion planning, which
leads to a higher success rate in total task and
motion planning. Second, the robot end-effector
orientation is changed to flat (parallel to the floor).
This usually places the end-effector orientation
far from the joint limit, which in turn makes the
pouring control easier.

3.2.3 Manipulation and Perception
Skills

Chemistry lab skills require a particular suite of
sensors, algorithms, and hardware. We provide an
interface for instantiating different skill instances
through ROS and simultaneously commanding
them. For instance, recrystallization experiments
in chemistry require both pouring, heating, and
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stirring, which uses both weight feedback for vol-
ume estimation and skills for interacting with the
liquid using available hardware.

Pouring Controller

In chemistry labs, a frequently used skill in chem-
ical experiments is pouring. Pouring involves high
intra-class variations depending on the underlying
objective (e.g., reaching a desired weight or pH
value); the substances and material types being
handled (e.g., granular solids or liquids); the glass-
ware being used (e.g., beakers and vials); the
overall required precision; and the availability of
accurate and fast feedback. Pouring is a closed-
loop process, in which feedback should be contin-
uously monitored. Among these pouring actions,
in our work we consider the following variations:
pouring of liquids and pouring of granular solids.
Note that, in contrast to many control prob-
lems, pouring is a non-reversible process where we
cannot compensate for overshoot (as the poured
material cannot go back to the pouring beaker).

Inspired by observations of chemists pouring
reagents, we propose a controller that allows the
robot to perform different pouring actions. As
shown in Fig. 5, the proposed method takes sen-
sor measurements (e.g., weight feedback from the
scale) as feedback and a reference pouring tar-
get. The algorithm outputs a robot end-effector
joint velocity describing oscillations of the arm’s
wrist. Since sensors are characterized by measure-
ment delays, chemical reactions require time to
stabilize, and pouring is a non-reversible action,
chemists tend to conservatively pour a small
amount of content from the pouring vessel into
the target vessel. They periodically wait for some
time to observe any effects and then pour micro-
amounts again. In our approach, we use a shaping
function s(t) to guide the direction and frequency
of this oscillatory pouring behavior, while a PD
controller lowers the pouring error. The end-
effector velocity vector is computed by blending
the shaping function s(t) over the PD control sig-
nal, vPD(t) = kpe+ kdė, where e(t) = xref − xfb.
Fig. 6 shows an example of the angular veloc-
ity of the end-effector and the error during actual
pouring. More information about the pouring skill
method can be found in Appendix .1.

Sensors

XDL & 
Task Planner

pre-pouring
phase

pouring
phase

Pouring 
Controller

Robot

shaping function PD controller
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Fig. 5: Pouring skill controller: given the XDL
& TAMP reference values and sensor feedback,
the pouring controller computes the end-effector
velocity for the robot by blending a shaping func-
tion s(t) and a PD control output vPD(t).
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Fig. 6: An example of pouring control. The
velocity of the end-effector is controlled based on
the feedback error and shaping function.

Turbidity-based Solubility Measurement

Solubility of a solute is measured by determining
the minimum amount of solvent (water) required
to dissolve all solutes at a given temperature
when the overall system is in equilibrium (Shiri
et al., 2021). Since the solutions get transparent
when all solutes dissolve into water, turbidity, or
opaqueness of the solution, is used as the metric
to determine the completion of the experiment.
The average brightness of the solution was used
as a proxy for the relative turbidity, inspired by
HeinSight (Shiri et al., 2021). That work com-
pared the current measured turbidity value with
a reference value (coming from pure solvent) to
determine when the solute was dissolved. Differ-
ently from them, we use the relative turbidity
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Fig. 7: An example of automated turbid-
ity measurement. The camera detects the Petri
dish using Hough Circle Transform. The average
brightness of the detected area (red square) is used
as a proxy of turbidity.

changes between the current and previous mea-
surement values to detect when the solution is dis-
solved. Moreover, to make the perception pipeline
autonomous, when the robot with an in-hand
camera observes the dish containing the solution,
it detects the largest circular shape as the dish
using a Hough Circle Transform implemented in
OpenCV. The square region containing the dish is
converted into the HSV color space, and the aver-
age Value (brightness) of the region is used as a
turbidity value. Figure 7 shows an example of the
automated turbidity measurement. Although the
detected area contains the dish and stir bar, they
do not affect the relative value because these are
a constant bias in all measurements.

4 Experiments

4.1 XDL Generation

We conducted experiments to evaluate the follow-
ing hypotheses: i) Automated iterative prompting
increases the success rate of unfamiliar language
generation, ii) The quality of generated task plans
is better than existing methods. To generate XDL
plans, we use text-davinci-003, the most capa-
ble GPT-3 model at the time of writing. We chose
to use this instead of code-davinci-002 due to
query and token limits.

4.1.1 Datasets

We evaluated our method on two different
datasets:

Chem-RnD [Chemistry Research &
Development]

This dataset consists of 108 detailed chemistry-
protocols for synthesizing different organic com-
pounds in real-world chemistry labs, sourced from
the Organic Syntheses dataset (volume 77) (Mehr
et al., 2020). Due to GPT-3 token limits, we only
use experiments with less than 1000 characters.
We use Chem-RnD as a proof-of-concept that our
method can generate task plans for complex chem-
istry methods. We do not aim to execute the plans
in the real world, and so we do not include any
constraints.

Chem-EDU [Everyday Educational
Chemistry]

We evaluate the integration of CLAIRify with
real-world robots through a dataset of 42 natural
language instructions containing only safe (edible)
chemicals and that are, in principle, executable by
our robot. The dataset consists of basic chemistry
experiments involving edible household chemicals,
including acid-base reactions and food preparation
procedures1. When generating the XDL, we also
included environment constraints based on what
equipment our robot had access to (for example,
our robot only had access to a mixing container
called “beaker”).

4.1.2 Metrics and Results

The results section is organized based on the
four performance metrics that we will consider,
namely: Ability to generate structured-language
output, Quality of the generated plans, Num-
ber of interventions required by the verifier, and
Robotic validation capability. We compared the
performance of our method with SynthReader, a
state-of-the-art XDL generation algorithm which
is based on rule-based tagging and grammar pars-
ing of chemical procedures (Mehr et al., 2020).

(1) Ability to generate a structured lan-
guage plan. First, we investigate the success

1CLAIRify Data & code: https://github.com/ac-rad/xdl-
generation/

13

https://github.com/ac-rad/xdl-generation/
https://github.com/ac-rad/xdl-generation/


Table 1: Comparison of our method with existing methods on the number of successfully generated valid
XDL plans and their quality on 108 organic chemistry experiments from (Mehr et al., 2020).

Dataset Method Number generated ↑ Expert preference ↑
Chem-RnD SynthReader (Mehr et al., 2020) 92/108 13/108

CLAIRify [ours] 105/108 75/108
Chem-EDU SynthReader (Mehr et al., 2020) 0/42 -

CLAIRify [ours] 42/42 -

Fig. 8:Violin plots showing distributions of different error categories in XDL plans generated
for experiments for the Chem-RnD (left) and Chem-EDU (right) datasets. The x-axis shows
the error categories and the y-axis shows the number of errors for that category (lower is better). For the
Chem-RnD dataset, we show the error distributions for both CLAIRify and SynthReader. Each violin
is split in two, with the left half showing the number of errors in plans generated from CLAIRify (teal)
and the right half showing those from SynthReader (navy). For the Chem-EDU dataset, we only show
the distributions for CLAIRify. In both plots, we show the mean of the distribution with a gold dot
(and the number beside in gold) and the median with a grey dot.

probability for generating plans. For CLAIRify,
if it is in the iteration loop for more than x steps
(here, we use x = 10), we say that it is unable to
generate a plan and we exit the program. When
comparing with SynthReader, we consider that
approach unable to generate a structured plan if
the SynthReader IDE (called ChemIDE2) throws
a fatal error when asked to create a plan. For
both models, we also consider them unable to gen-
erate a plan if the generated plan only consists
of empty XDL tags (i.e., no experimental pro-
tocol). For all experiments, we count the total
number of successfully generated language plans
divided by the total number of experiments. Using
this methodology, we tested the ability of the two
models to generate output on both the Chem-
RnD and Chem-EDU datasets. The results for
both models and both datasets are shown in Table
1. We find that out of 108 Chem-RnD experi-
ments, CLAIRify successfully returned a plan

2ChemIDE using XDL:
https://croningroup.gitlab.io/chemputer/xdlapp/

97% of the time, while SynthReader returned a
plan 85% of the time. For the Chem-EDU dataset,
CLAIRify generated a plan for all instructions.
SynthReader was unable to generate any plans for
that dataset, likely because the procedures are dif-
ferent from typical chemical procedures (they use
simple action statements). This demonstrates the
generalizability of our method: we can apply it
to different language styles and domains and still
obtain coherent plans.

(2) Quality of the predicted plan (with-
out executing the plan). To determine if the
predicted task plans actually accomplish every
step of their original instructions, we report the
number of actions and parameters that do not
align between the original and generated plan,
as annotated by expert experimental chemists.
To compare the quality of the generated plans
between CLAIRify and SynthReader, we ask
expert experimental chemists to, given two
anonymized plans, either pick a preferred plan
among them or classify them as equally good.
We also ask them to annotate errors in the plans
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in the following categories: Missing action, Miss-
ing parameter, Wrong action, Wrong parameter,
Ambiguous value, Other error. Here, actions refer
to high-level steps in the procedure (e.g., <Add

reagent="acetic acid"> is an action) and
parameters refer to reagents, hardware, quantities
and experiment descriptors (e.g., in <HeatChill

vessel="beaker" temp="100C">, vessel and
temp are both parameters). The annotations were
performed using the LightTag Text Annotation
Tool (Perry, 2021).

Chem-RnD dataset

The results for the Chem-RnD dataset with
respect to expert preference are reported in the
last column of Table 1. We found that out of
108 experiments, experts preferred the XDL plan
generated from CLAIRify 75 times and the one
from SynthReader 13 times (the remaining 20
were considered to be of similar quality).

The distributions of the annotated errors are
shown in Figure 8. We find that for 4 out of 6
error categories, our model does at least as well as
or better than the baseline method when consid-
ering the mean and median of the distributions.
We also find that for those categories, our method
produces more experiments with 0 errors.

One advantage of our method is that it gener-
ates less plans with missing actions compared with
the baseline. As XDL generation in SynthReader
is implemented by rule-based pattern-matching
techniques, any actions that do not match those
templates would not appear in the final XDL. For
example, for the protocol:

To a solution of m-CPBA (200 mg , 0.8 mmol) in
dichloromethane (10 mL), cooled to 0 ◦C, was
added dropwise a solution of 5-chloro -10-oxa -3-
thia -tricyclo [5.2.1.01 , 5] dec -8-ene (150 mg ,
0.8 mmol) in dichloromethane (10 mL).

the plan generated by CLAIRify was

<Add vessel="V1" reagent="m-CPBA" amount="200 mg
"/>
<Add vessel="V1" reagent="dichloromethane"
volume="10 mL"/>
<HeatChill vessel="V1" temp="0 ◦C" time="3 min"/
>
<Add vessel="V2" reagent="5-chloro -10-oxa -3-thia
-tricyclo [5,2,1,0*1,5*]dec -8-ene" amount="150 mg
"/>
<Add vessel="V2" reagent="dichloromethane"
volume="10 mL"/>
<Transfer from_vessel="V2" to_vessel="V1"/>

while the plan generated from SynthReader was

<Add vessel="reactor" reagent="5-chloro -10-oxa
-3-thia -tricyclo" volume="0" speed="40.0"/>

Our model is able to decompose a compli-
cated procedure into simpler actions by making
two solutions in separate beakers and combining
them with a Transfer procedure. It also assumes
that the solutions don’t already exist as mixtures
and creates them from scratch. This is another
benefit of our model, as it is able to understand
implicit actions. For example, given the prompt

L-Ornithine (31.92 g, 120 mmol) was added to a
mixture of KOH (6.72 g, 120 mmol), water (200 ml
) and THF (100 ml)

SynthReader considers a mixture of three chemi-
cals as a single solution and creates the action:

<Add vessel="reactor" reagent="a mixture of KOH
(6.72 g, 120 mmol), water (200 ml) and THF (100
ml)" volume="0" speed="40.0"/>
<AddSolid vessel="reactor" reagent="L-Ornithine"
mass="31.92 g"/>

On the other hand, CLAIRify correctly under-
stand the implicit action to mix them beforehand
and generates an appropriate XDL:

<Add vessel="V1" reagent="L-Ornithine" amount="
31.92 g"/>
<Add vessel="V1" reagent="KOH" amount="6.72 g"/>
<Add vessel="V1" reagent="Water" amount="200 ml"
/>
<Add vessel="V1" reagent="THF" amount="100 ml"/>

However, our model produced plans with
a greater number of wrong actions than Syn-
thReader. This is likely because our model is
missing domain knowledge on certain actions
that would need to be included in the prompt or
verifier. For example, given the instruction ”Dry
solution over magnesium sulfate”, our model
inserts a <Dry .../> into the XDL plan, but the
instruction is actually referring to a procedure
where one passes the solution through a short
cartridge containing magnesium sulphate, a proce-
dure which seems to be encoded in SynthReader.
Another wrong action our model performs is
reusing vessels. In chemistry, one needs to ensure
a vessel is uncontaminated before using it. How-
ever, our model generates plans that can use the
same vessel in two different steps without washing
it in between. Our model also sometimes gener-
ates plans with ambiguous values. For example,
many experiment descriptions include conditional
statements such as “Heat the solution at the boil-
ing point until it becomes white”. Conditions in
XDL need a numerical condition as a parameter.
Our model tries to incorporate them by includ-
ing actions such as <HeatChill temp="boiling

point" time="until it becomes white"/>,
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Table 2: Verifier Analysis. We report the average number of times CLAIRify calls the verifier for the
experiments in a given dataset, as well as the minimum and maximum number of times. We also report
the type of error encountered by the verifier and the number of times it caught that type.

Dataset Average num. Max/min Error type caught by verifier [count]
verifier calls verifier calls

Chem-RnD 2.58± 2.00 10/1 - missing property in action [306]
- property not allowed [174]
- wrong tag [120]
- action does not exist [21]
- item not defined in Hardware or
Reagents list [15]
- plan cannot be parsed as XML [6]

Chem-EDU 1.14± 0.47 3/1 - item not defined in Hardware or
Reagents list [47]
- property not allowed [26]
- wrong tag [40]
- missing property in action [3]

but they are ambiguous. We can make our model
better in the future by incorporating more domain
knowledge into our structured language descrip-
tion and improving our verifier with real-world
constraints. For example, we can incorporate
visual feedback from the environment, include
look-up tables for common boiling points, and
ensure vessels are not reused before cleaning.

Despite the XDL plans generated by our
method containing errors, we found that the
experts placed greater emphasis on missing
actions than ambiguous or wrong actions when
picking the preferred output, indicating larger
severity of this class of error for the tasks and
outputs investigated here.

Chem-EDU dataset

We annotated the errors in the Chem-EDU
datasets using the same annotation labels as for
the Chem-RnD dataset. The breakdown of the
errors is in the right plot of Figure 8. Note that we
did not perform a comparison with SynthReader
as no plans were generated from it. We find that
the error breakdown is similar to that from Chem-
RnD, where we see amibiguous values in exper-
iments that have conditionals instead of precise
values. We also encounter a few wrong parame-
ter errors, where the model does not include units
for measurements. This can be fixed in future
work by improving the verifier to check for these
constraints.

(3) Number of interventions required by
the verifier. To better understand the inter-
actions between the generator and verifier in
CLAIRify, we analyzed the number of interac-
tions that occur between the verifier and generator
for each dataset to understand the usefulness of
the verifier. In Table 2, we show that each experi-
ment in the Chem-RnD dataset runs through the
verifier on average 2.6 times, while the Chem-EDU
dataset experiments runs through it 1.15 times on
average. The difference between the two datasets
likely exists because the Chem-EDU experiments
are shorter and less complicated. The top Chem-
EDU error encountered by the verifier was that an
item in the plan was not defined in the Hardware
or Reagents list, mainly because we included hard-
ware constraints for this dataset that we needed to
match in our plan. In Figure 9, we show a sample
loop series between the generator and verifier.

4.2 Robot execution

To analyze how well our system performs in the
real world, we execute a few experiments from the
Chem-EDU dataset on our robot. Three experi-
ments from the Chem-EDU dataset were selected
to be executed.
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Table 3: Number of XDL plans successfully generated for different error message designs in the iterative
prompting scheme on a validation set from Chem-RnD.

Variations of Iterative Prompt Design using Ver-
ifier Error Messages

Plan’s generated success rate (%) ↑

Naive: XDL from previous iteration and string
“This XDL was not correct. Please fix the errors.”

0

Last Error : Error List from verifier from previous
iteration

30

All Errors cumulative: Accumulated error List
from all previous iterations

50

XDL + Last Error : XDL and Error List from
verifier from previous iteration

100

Fig. 9: Feedback loop between the Generator and Verifier. The input text is converted to
structured-like language via the generator and is then passed through the verifier. The verifier returns
a list of errors (marked with a yellow 1). The feedback is passed back to the generator along with the
erroneous task plan, generating a new task plan. Now that previous errors were fixed and the tags could
be processed, new errors were found (including a constraint error that the plan uses a vessel not in the
environment). These errors are denoted with a blue 2. This feedback loop is repeated until no more errors
are caught, which in this case required 3 iterations.

4.2.1 Experiment setup

Hardware

The proposed lab automation framework has been
evaluated using the Franka Emika Panda arm
robot, equipped with a Robotiq 2F-85 gripper and
an Intel RealSense D435i stereo camera mounted
on the gripper to allow for active vision. The
robot’s DoF has been extended by one degree (in
total 8 DoF) at its end-effector using a Dynamixel

XM540-W150 servo motor. Fig. 2 shows the hard-
ware setup.

Lab Tools Integration

The robot framework is expanded by incorporat-
ing lab tools. We used an IKA RET control-visc
device, which works as a scale, hotplate, and stir
plate, and a Sartorius BCA2202-1S Entris, which
works as a high-precision weighing scale. The
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devices communicate with the TAMP solver to
execute chemistry specific skills.

Software

The robot is controlled using FrankaPy (Zhang
et al., 2020). We implemented a ROS wrapper
for the servo motor (8th DoF). To detect fidu-
cial markers, we use the AprilTag library (Olson,
2011). We use the MoveIt motion planning frame-
work (Coleman et al., 2014) for our TAMP solver
and its streams. The constrained planning func-
tion (Kingston et al., 2019) is an extension of
elion (, 2020).

4.2.2 Solution Color Change Based on
pH

As a basic chemistry experiment, we demon-
strated the color change of a solution containing
red cabbage juice. This is a popular introduc-
tory demonstration in chemistry education, as the
anthocyanin pigment in red cabbage can be used
as a pH indicator (Fortman and Stubbs, 1992). We
prepared red cabbage solution by boiling red cab-
bage leaves in hot water. The colour of the solution
is dark purple/red. Red cabbage juice changes its
color to bright pink if we add an acid and to blue if
we add a base, and so we acquired commercially-
available vinegar (acetic acid, an acid) and baking
soda (sodium bicarbonate, a base).

In this experiment, we generated XDL plans
using CLAIRify from two language inputs:
[1] Add 40 g of red cabbage solution into a
beaker. Add 10 g of acetic acid into the beaker ,
then stir the solution for 10 seconds.

[2] Add 40 g of red cabbage solution into a
beaker. Add 10 g of baking soda into the beaker ,
then stir the solution for 10 seconds.

Figure 10 shows the flow of the experiment.
Our system generated a XDL plan that correctly
captured the experiment; the plan was then passed
through TAMP to generate a low-level action plan
and was then executed by the robot.

4.2.3 Kitchen Chemistry

We then tested whether our robot could execute a
plan generated by our model for a different appli-
cation of household chemistry: food preparation.
We generated a plan using CLAIRify for the fol-
lowing lemonade beverage, which can be viewed
on our website:

Add 15 g of lemon juice and sugar mixture to a
cup containing 30 g of sparkling water. Stir
vigorously for 20 sec.

4.2.4 Solubility measurement

We finally measured the solubility of household
solutes as an example of basic educational chem-
istry experiments for students (Wolthuis et al.,
1960). Measuring solubility has desirable charac-
teristics as a benchmark for automated chemistry
experiments: (i) it requires basic chemistry oper-
ations, such as pouring, solid dispensing, and
observation of the solution status, (ii) solubil-
ity can be measured using ubiquitous food-safe
materials, such as water, salt, sugar, and (iii) the
accuracy of the measurement can be evaluated
quantitatively by comparing with literature val-
ues. We measured the solubility of three solutes:
table salt (sodium chloride), sugar (sucrose), and
alum (aluminum potassium sulfate).

The robot estimates the amount of water to
make a saturated solution by repeatedly pouring
a small amount of water. After pouring, the solu-
tion is stirred and the turbidity before and after
stirring was compared. The turbidity decreases
by stirring if the remaining solutes dissolved into
water, whereas it stays at a constant value if there
are no residues. If the turbidity decrease after the
N -th pouring is smaller than 5%, we assume there
were no residues at the beginning of N -th pouring
and that the amount of water required to dissolve
all solutes is between the volume of water added at
the (N−2)-th and (N−1)-th pouring. We use the
average of the two for simplicity of presentation.
Figure 12 shows an example of turbidity change
during the experiment.

A natural language explanation for the above
solubility measurement protocol is as follows:

Add 10 g of salt to the beaker.
Repeat the following steps for five times.
Add 10 g of water into the beaker , and measure
the turbidity.
After stirring for 90 seconds , measure the
turbidity again.

Note that we extended the XDL to allow tur-
bidity as a measurable quantity of <Monitor>

since the XDL standard at the time of writ-
ing (XDL 2.0.1) only supports temperature and
pH. We added this skill to our defintion of XDL
that we input to the LLM in CLAIRify. The
amount of solute and stirring time were changed
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Add 40g of red cabbage solution
into a beaker. Add 10 g of baking
soda into the beaker, then stir the
solution for 10 seconds.

Natural Language

<Add vessel="beaker"
reagent="baking

soda" amount="10 g"/>

<Add vessel="beaker"
reagent="red cabbage
solution" amount=

"40 g"/>

<Stir vessel="beaker"
time="10 s"/>

<XDL>
...
<Procedure>

<Add vessel="beaker" reagent="red cabbage solution"
amount="40 g"/>

<Add vessel="beaker" reagent="baking soda" amount="10 g"/>
<Stir vessel="beaker" time="10 s"/>

</Procedure>
</XDL>

Structured Language

(a)

(b)

CLAIRify

1 2 3

Fig. 10: Robot execution: The robot executes the motion plan generated from the XDL for given
natural language input. (a) CLAIRify converts the natural language input from the user into XDL. (b)
The robot interprets XDL and performs the experiment. Stirring is done by a rotating stir bar inside the
beaker.

for different solutes. The workflow of the solubility
experiments is shown in Fig. 11.

The measured solubility for three solutes is
shown in Table 4. The robot framework managed
to measure the solubility with sufficient accu-
racy that they are comparable to solubility values
found in the literature (NAOJ, 2022).

Table 4: Results of the solubility experi-
ments. Amount of solute in the beaker, amount
of water to dissolve all solute, calculated solubil-
ity (the amount of solute dissolved per 100 g of
water), and literature data for solubility at 20◦C
is shown. Literature data are taken or calculated
from (NAOJ, 2022).

solute solute [g] water [g] solubility lit. data % error
Salt 13.9 41.8 33.2 35.8 7.2
Sugar 60.00 26.46 226.8 203.9 11.2
Alum 3.00 29.87 10.0 11.4 12.3

The primary reason for the difference from the
literature value is the range of minimum amount
of water required for dissolving. In an example of
turbidity change shown in Fig. 12, the robot can
only tell the second pouring is insufficient and the
third pouring is sufficient to dissolve all solutes,
but it cannot tell the exact required amount. As
a result, the solubility measurement inherently
includes error caused by the resolution of pour-
ing. We can reduce the error by pouring a smaller

amount of water at once, but pouring less than 10
g is difficult because of the delayed feedback of the
scale and the scale minimum resolution. We can
improve the accuracy of solubility measurements
by developing a pipette designed for a robot.

4.2.5 Recrystallization Experiment

Recrystallization is a purifying technique to obtain
crystals of a solute by using the difference in solu-
bility at different temperatures. Typically, solutes
have higher solubility at high temperatures, mean-
ing hot solvents will dissolve more solute than
cool solvents. The excess amount of solute that
cannot be dissolved anymore while cooling the sol-
vent precipitates and forms crystals. We tested the
recrystallization of alum by changing the temper-
ature of the water. Alum was chosen as the target
solute since its solubility greatly changes accord-
ing to water temperature. The recrystallization
experiment setup extends the solubility test by
pre-heating the solvent. A natural language expla-
nation for the above recrystallization experiment
protocol is as follows:

Add 50g of water to beaker.
Heat the beaker filled with water for 1 min to
60 C.
Add 20 g of alum into an empty beaker , and add
50 g of the heated water into the beaker.
Cool the beaker for 30 min to 20 C.

Fig. 13 shows the result of the experiment.
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Add 10 g of salt to the beaker.
Repeat the following steps for
five times. Add 10 g of water
into the beaker, and measure
the turbidity. After stirring for
90 seconds, measure the
turbidity again.

Natural Language
<XDL>

<Synthesis>
<Hardware>

<Component id="beaker"/>
</Hardware>

<Reagents>
<Reagent name="salt"/>
<Reagent name="water"/>

</Reagents>

<Procedure>
<Add vessel="beaker" reagent="salt"

amount="10 g"/>
<Repeat repeats="5">

<Add vessel="beaker" reagent="water"
amount="10 g"/>

<Monitor target="beaker"
quantity="turbidity"/>

<Stir vessel="beaker" time="90"/>
<Monitor target="beaker"

quantity="turbidity"/>
</Repeat>

</Procedure>
</Synthesis>

</XDL>

Structured Language(a)

(b)

CLAIRify

Dissolvedsolute

UndissolvedsoluteInitial state Graspsolute Pour solute Graspsolvent

Returnto initial state Observe
& stir

Pour solvent

if dissolved

Fig. 11: Workflow of solubility experiment. (a) We translate a natural language input to XDL using
CLAIRify. (b) We then execute the plan on a robot using TAMP. First, a fixed amount of the solute
is added to the dish on the weighing scale and stirrer. The robot pours 10 g of water into the dish. The
solution is mixed with the magnetic stirrer. After stirring, the turbidity of the solution is measured to
check dissolvement. If undissolved, another 10 g of water is added until no solutes remain. The experiment
was conducted at room temperature (25◦C).

4.3 Ablation Studies

We assess the impact of various components in
our prompt designs and feedback messaging from
the verifier. We performed these tests on a small
validation set of 10 chemistry experiments from
Chem-RnD (not used in the test set) and report
the number of XDL plans successfully generated
(i.e., was not in the iteration loop for x = 10
steps).

4.3.1 Prompt Design

To evaluate the prior knowledge of the GPT-3
on XDL, we first tried prompting the generator
without a XDL description, i.e., with the input:

initial_prompt = """
Convert to XDL:
# <Natural language instruction >"""

The LLM was unable to generate XDL for
any of the inputs from the small validation set
that contains 10 chemistry experiments. For most
experiments, when asked to generated XDL, the
model output a rephrased version of the natural
language input. In the best case, it output some
notion of structure in the form of S-expressions
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Fig. 12: Turbidity change during exper-
iment. Water is poured into the dish during
pouring (grey) and turbidity is measured during
observation (blue). The end of the experiment
is determined by turbidity comparison. In this
example, all solutes are dissolved at the third
pouring because the turbidity change after the
fourth pouring is below the threshold. The aver-
age weight of the second and third pouring is used
to calculate the solubility.

Fig. 13: Recrystallization of
alum inside the water. After
heating water by putting a beaker
with water on a hotplate, the robot
poured alum into a dish. The robot
then poured hot water, and the
solution was heated and stirred.
The formation of a precipitate is
observed after the dish is cooled
down. The dried crystals in a vial
are shown.

or XML tags, but the outputs were very far
away from correct XDL and were not related to
chemistry. We tried the same experiment with
code-davinci-002; the outputs generally had
more structure but were still nonsensical. This
result suggests the LLM does not have the knowl-
edge of the target language and including the
language description in the prompt is essential to
generate an unfamiliar language.

4.3.2 Feedback Design

We experimented with prompts in our iterative
prompting scheme containing various levels of
detail about the errors. The baseline prompt con-
tains a description as well as the natural language
instruction. We wanted to investigate how much

detail is needed in the error message for the gen-
erator to be able to fix the errors in the next
iteration. For example, is it sufficient to write
“There was an error in the generated XDL”, and
do we need to include a list of errors from the
verifier (such as “Quantity is not a permissible
attribute for the Add tag”), or do we also need
to include the erroneous XDL from the previous
iteration?

We find that including the erroneous XDL
from the previous iteration and specifying why it
was wrong resulted in the highest number of suc-
cessfully generated XDL plans. Including a list of
errors was better than only writing “This XDL
was not correct. Please fix the errors”, which was
not informative enough to fix any errors. Includ-
ing the erroneous XDL from the previous iteration
is also important; we found that including only a
list of the errors without the context of the XDL
plan resulted in low success rates.

4.4 Component analysis for robot
execution

4.4.1 Pouring Skill Evaluation

We evaluated the accuracy and efficiency of the
pouring skill for liquid and powder. To evaluate
the effect of our proposed pouring method, we
implemented a PD control pouring method where
end-effector angular velocity is proportional to the
difference between target and feedback weight as
a baseline. Fig. 14 shows the pouring experiment
results. The results show that the shaping function
contributed to reducing the overshooting com-
pared to PD control pouring. The overshoot of the
PD control pouring is mainly because of the scale’s
delayed feedback (∼3 s). The intermittent pour-
ing caused by the shaping function compensated
for the delay and improved the overall pouring
accuracy. On average the pouring error using the
shaping approach is 2.2±1.5 g and for PD control
is 24.5±12.0 g and their average relative error and
standard deviation are 8.1± 4.8 % and 81.4± 4.5
%. Moreover, as we can see both the error and
relative error stays approximately constant with
respect to the target amount when using the shap-
ing method, in contrast to the PD controller. The
average pouring time with the shaping function
for 50 mL water and salt were 25.1 s and 36.8 s,
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(a) Pouring error in water.
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(b) Pouring error in salt.

Fig. 14: Evaluation of pouring error. The
pouring errors of our shaping pouring and PD con-
trol baseline pouring are compared using (a) water
and (b) salt. The bar plot shows the error (poured
amount - target amount) and the line plot shows
the relative error. The error bars show the stan-
dard deviation.

Table 5: Success rate comparison of
7 and 8-DoF robot.

Scenario 1 (%) Scenario 2 (%)

IK Plan IK Plan
7 DoF 99 84 99 70
8 DoF 100 97 100 84

respectively. Our results are comparable with pre-
vious work (Kennedy et al., 2019; Huang et al.,
2021) in terms of pouring error and time, without
using a learned, vision-based policy, or expensive
equipment setup.

4.4.2 Constrained Motion Planning in
7/8 DoF robot

The constrained motion planning performance of
7 DoF and 8 DoF robot is evaluated in two
scenarios: (1) single step, (2) two steps. In sce-
nario (1), robots find a constrained path with a
fixed orientation from initial to final positions that
are randomly sampled. Scenario (2) extends the
first with an additional intermediate sampled way-
point. For each scenario, we run 50 trials in Alg. 3
with random seeding of the IK solver.

In scenario (2), we restart the sequence plan-
ning from the first step if a step fails. Constraints
are set to the robot end-effector pitch and roll
(∥θ, ϕ∥ ≤ 0.1 rad).

The performance of the 7-DoF and 8-DoF
robot arms for the two scenarios are shown in
Table 5. The results show that the IK and con-
strained motion planning have higher success rates
in 8-DoF compared with the 7-DoF robot.

5 Discussions

In this paper, we demonstrate how LLMs are effec-
tive tools for translating natural language inputs
into domain-specific target languages without any
fine-tuning. We find that by prompting an LLM
with errors that it makes, it is able to correct its
own output and generate syntactically valid plans.
We find that LLMs are robust to variations in
natural language, which is important for lower-
ing the barrier to successful user interaction. The
XDL plans generated by CLAIRify can then be
combined with our TAMP pipeline to effectively
perform multistep chemistry experiments in the
real world. However, the current study is limited
to a few types of chemistry experiments because
the number of skills incorporated in the framework
is limited. Increasing the repertoire of skills, such
as glassware perception in 3D and clutter, without
fiducial markers (Eppel et al., 2020), can improve
the framework scalability. As we develop more
and more skills, we can append their descriptions
to the language model input. We demonstrated
this by appending a new skill, <Monitor>, to the
XDL description, and the LLM was able to accu-
rately incorporate it into the plan. Another issue is
that the inefficiency of PDDLStream inhibits the
framework from being reactive in a dynamic envi-
ronment. Incorporating the learning-based search
heuristics for PDDLStream (Khodeir et al., 2021,
2022) may overcome this limitation. Constrained
motion planning was shown to effectively avoid
spillage of the beaker contents during transfer
in our experiments. We have also shown that
adding an extra 8th DoF to the robot enabled
more flexibility and a higher success rate for
constrained motion planning. However, the pro-
posed constrained motion planning embedded in
TAMP cannot run in real-time. Considering the
dynamics of the beaker content may help to have
higher flexibility in robot manipulation (Mucha-
cho et al., 2022). Although our skill has currently
attained 8% error for liquid and powder pouring,
higher accuracy is desirable for precise experi-
ments in a chemistry lab. We used a scale with
integrated functionality for stirring and heating,
but its measurement is delayed for 3 s. Higher pre-
cision pouring can be attained using a scale with
a shorter response time; also, it can be achieved
by specialized tools, such as a pipette. In addition,
visual feedback during pouring may avoid spillage.
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Moreover, CLAIRify was successful in gener-
ating plans beyond the state-of-the-art method for
the chemistry domain-specific structured language
XDL. Although the generated plans were syntac-
tically correct and satisfied the constraints, they
contained errors. However, experts placed greater
emphasis on missing actions than on ambiguous
or incorrect actions when selecting the preferred
output, indicating that this class of error is more
severe for the tasks and outputs investigated
here. These results demonstrate the generalizabil-
ity of our method, which uses zero-shot iterative
prompting verification. We can apply it to differ-
ent language styles and domains and still obtain
coherent plans. While our approach, which com-
bines LLMs and TAMP, showed promising results
in generating feasible and executable plans, as
evidenced by our evaluation, the capabilities of
pure LLMs in generating semantically correct
plans remain limited. The limitation in task plan-
ning abilities has been highlighted in a recent
study (Bubeck et al., 2023) as well. To address
this shortcoming, an alternative approach could
be to incorporate human-in-the-loop planning or
to utilize multi-modal foundational models that
consider the surrounding scene of the robot.

Another important consideration to address
is the tradeoff between the human interpretabil-
ity and expressive power of the target structured
language. Our approach to using intermediate lan-
guage enables users to ensure the LLM’s natural
language interpretation is reasonable; however,
the expressive power of XDL imposed limitations
on the framework’s abilities. The robot framework
can conduct more diverse actions than XDL can
express, but the use of XDL limits the available
actions. This problem may be alleviated by gen-
erating the robot program directly, but human
interpretability may be decreased as a result.

6 Conclusions

In this paper, we presented a framework for
automating chemistry lab experiments using
general-purpose robot manipulators and natu-
ral language commands. In order to facilitate
the closed-loop execution of long-horizon chem-
istry experiments, CLAIRify maps natural lan-
guage commands to XDL, a human-interpretable
intermediate language that standardizes chem-
istry experiment descriptions. Subsequently, XDL

instructions are converted into a sequence of sub-
goals for a constrained task and motion plan
solver, and the robot executes those plans using
its diverse set of skills. Finally, the robot visually
monitors the progress of the tasks. We demon-
strated that our approach lowers the barriers
to instructing robots by non-experts to execute
robot task plans. The robot handles solubility and
recrystallization experiments autonomously when
provided with natural language inputs.
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.1 Pouring Policy

The pouring policy is the blending of a shap-
ing function s(t) and a model-free PD controller
vPD(t), expressed as vPD(t) × s(t). The PD
controller is defined as:

vPD(t) = kpe+ kdė, (1)

where e(t) = xref − xfb. The shaping function
is implemented via the summation of several unit
functions u(t) as follows:

s(t) = u(t)− 2 u(t− t0)+∑N
k=1{u(t− (t0 + k Tdeactive))+

u(t− (t0 + k (Tdeactive + Tidle)))
−2 u(t− (t0 + k (Tdeactive + Tidle + Tactivate)))}

(2)
where t0 is the moment in which e(t) starts
to change, meaning that the material is getting
added to the target dish. Tdeactive, Tidle, and
Tactive are the parameters set by the user to
describe the periodic motion of the robot end-
effector. This motion continues till the material
transferred to the target dish reaches the desired
amount.
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