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1 Introduction

In the real world, precise object detection could improve the security of self-
driving car. In part A project, there is still room for the average precision to be
improved. We changed the loss function and gaussian kernel type to generate
the target heatmap and predicted heatmap. Recently, focal loss function [1][2]
made great achievements in the field of object detection. We evaluated focal
loss and alpha-balanced focal loss for heatmap building in the application of
object detection, as well as its influence on average precision of object detection.
In addition, we explored to applying gaussian kernels indicating the size and
heading of cars for each car’s heatmap representation.

2 Related work

2.1 loss function

We explored to apply focal loss function and α-balanced focal loss function to
replace MSE loss function in the process of heatmap building

2.1.1 focal Loss

FL(p, y, γ) = −y(1− p)γ log(p)− (1− y)pγ log(1− p)

∂FL

∂p
= yγ(1−p)γ−1log(p)−y(1−p)γ

1

p
−(1−y)γpy−1log(1−p)+(1−y)pγ

1

1− p

In theory, as the γ increase, model will take more care of hard negative samples.
Next, do a simple test. Assume two points (p1, y1) are (0.4, 1) and (0.1, 1).
When γ = 0, the ∂FL

∂p is 1.66 and 1.11. When γ increases up to 2, ∂FL
∂p is

0.67 and 0.032 respectively. Obviously, the gradient ratio between the samples
difficulty to be classified (p = 0.4) and those easy to be classified (p=0.1) sharply
increases, which makes the model take more attention to hard negative samples
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2.1.2 α-balanced Focal Loss

α− FL(p, α, γ) = −αy(1− p)γ log(p)− (1− α)(1− y)pγ log(1− p)

In some samples, the number of negative and positive samples might be
imbalanced. α is added to help balance the bias caused by such case, which
helps improve the performance of the model.

2.2 Generalized Gaussian Filter

Let us define the Multivariate Gaussian filter as:

G(x, µ) =
exp(− 1

2 (x− µ)TΣ−1(x− µ))√
(2π)k|Σ|

∝ exp(−1

2
(x− µ)TΣ−1(x− µ))

Where x = [x, y]T , µ = [µx, µy]
T and k is the number of variables in x

An isotropic Gaussian kernel is symmetrical and has a covariance matrix that
can be represented as Σ = σ2I. The covariance matrix dictates the shape of our
Gaussian kernel. Our target detections differ in bounding box size and yaw, so
we need to match our Gaussian kernel according to those parameters.

Since cars are not symmetric, we can define an anisotropic Gaussian filter ac-
cording to detection shape using a covariance matrix as follows:

Σ =

[
a 0
0 b

]
Let scale = x size2+y size2

η where x_size and y_size are the respective dimen-
sions of a detection bounding box and η is the heatmap norm scale. We will
define a and b as follows: a = x size

y size
· scale and b = scale.

One problem with this, is that all of our kernels will be scaled in the same
direction, regardless of their yaw direction. To better match our detection tar-
gets, we will now take our anisotropic Gaussian kernel and will rotate it to
match the yaw of the label. We will use a rotation matrix define as follows
(where θ is the detection yaw angle):

T =

[
cosθ −sinθ
sinθ cosθ

]
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We will now define our new rotate anisotropic Gaussian kernel as:

E(x, µ) = G(Tx,Tµ)

=
exp(− 1

2 (Tx−Tµ)TΣ−1(Tx−Tµ))√
(2π)k|Σ|

∝ exp(−1

2
(Tx−Tµ)TΣ−1(Tx−Tµ))

= exp(−1

2
(x− µ)TTTΣ−1T(x− µ))

= exp(−1

2
(x− µ)T Σ̂−1(x− µ)) (Σ̂−1 = TTΣ−1T)

We see that after the rotation, we simply get a new Gaussian kernel.

3 Methodology

Based on the project in part A, we add two more arguments for the command-
line –loss func= and –kernel= to config loss function and kernel for train and
overfit . For more details, please check README file.

• 1. Firstly, we tune the hyperparameters respectively inside MSE, Focal
and α-balanced loss functions with the isotropic gaussian kernel, and then
find the optimized loss hyperparameters to applying into the following
step.

• 2. Then, apply isotropic, anisotropic and rotated gaussian kernel respec-
tively on 3 kinds of loss functions mentioned above.

4 Evaluation

4.1 Heatmap Visualizing

We add the label bounding boxes into the target heatmap picture (in the case
of rotated kernel). The picture below shows the heading and size of target la-
bels matches bounding box better than an anisotropic Gaussian kernel, which
indicates the correctness of heatmap representation with rotated kernel .
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4.2 Loss Function Hyperparameter Tuning

We apply average precision, with threshold 2, 4, 8, 16 and mean average preci-
sion, to evaluate different models.

4.2.1 Focal Loss Function

γ AP2 AP4 AP8 AP16 mean

1 0.22 0.37 0.40 0.40 0.34
2 0.23 0.37 0.40 0.41 0.35
3 0.23 0.36 0.38 0.38 0.34
5 0.22 0.31 0.33 0.33 0.30

4.2.2 alpha-balanced Focal Loss Function

α γ AP2 AP4 AP8 AP16 mean

0.75 0 0.25 0.41 0.48 0.49 0.41
0.75 0.1 0.28 0.45 0.51 0.53 0.44
0.75 0.2 0.26 0.41 0.45 0.46 0.39
0.25 0.75 0.17 0.25 0.26 0.29 0.24
0.5 0.5 0.25 0.40 0.43 0.44 0.38

For alpha-balanced focal loss, hyperparameters α = 0.75 and γ = 0.1 where
used. For focal loss, the value of γ = 2 was used.
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4.3 Applying various Gaussian kernels

We apply average precision, with threshold 2, 4, 8, 16 and mean average preci-
sion, to evaluate different models.

loss kernel AP2 AP4 AP8 AP16 mean

mse isotropic 0.26 0.41 0.45 0.45 0.40
mse anisotropic 0.27 0.41 0.45 0.46 0.40
mse rotated 0.27 0.44 0.48 0.49 0.42
focal isotropic 0.23 0.37 0.40 0.41 0.35
focal anisotropic 0.23 0.36 0.39 0.39 0.34
focal rotated 0.22 0.37 0.39 0.40 0.35

abfocal isotropic 0.28 0.45 0.51 0.53 0.44
abfocal anisotropic 0.23 0.36 0.40 0.40 0.35
abfocal rotated 0.27 0.43 0.48 0.49 0.42

5 Observation

From the experiments result, compared with isotropic kernel, anisotropic and
rotated kernel slightly improves the average precision in the cases of mse loss
function while when the loss function is focal or α-balanced focal loss func-
tion, anisotropic and rotated filters slightly decreased the average precision.
Compared with anisotropic filter, rotated kernel always perform better, which
accords with that rotated kernel takes both scale and headings of labels into
consideration. Generally, MSE performs worse than α-balanced focal loss func-
tion but better than focal loss function. Hence, from the observations, rotated
gaussian kernel and α-balanced focal loss function cannot help improve aver-
age precision at the same time. The model with isotropic gaussian kernel and
α-balanced focal loss function where α = 0.75 and γ = 0.1 achieves best perfor-
mance.

6 Limitations

A limitation of our focal loss and alpha-balanced focal loss approach is related
to hyper-parameter tuning. In order to evaluate the performance of a chosen γ
and α, the model has to be trained from scratch which is time consuming. In
our approach we used manual search which might not have produced optimal
results. For future work, algorithmic techniques for hyperparameter optimiza-
tion such as grid search, Bayesian optimization or neural networks could be used.

For the Generalized Gaussian Filter, there is room for future improvement in
terms of tuning the scale parameter. The scale parameter controls the size of
our Gaussian kernel and it is something that we need to tune. Future work
could look into the effect of voxelization step size on the scale, and comparing
different candidate scale calculations on performance.
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